Eng
Summary

GSR065D25

GSR065D25 series 650V, 72m Ω GaN FETs are normally closed devices. It provides superior reliability and performance by combining the most advanced high-voltage GaNHEMT with low-voltage silicon MOSFETs. It provides higher efficiency than silicon through lower gate charge, lower cross loss and smaller reverse recovery charge.

GaN chip power supply chip GaN chip third generation semiconductor
Detail DataSheet

Product Description

GSR065D25(650VGaNFETPQFNSeries)

GSR065D25 series 650V, 72m Ω GaN FETs are normally closed devices& nbsp; It provides superior reliability and performance by combining the most advanced high-voltage GaNHEMT with low-voltage silicon MOSFETs.

It provides higher efficiency than silicon through lower gate charge, lower cross loss and smaller reverse recovery charge.

 

Product characteristics

  • GaN technology certified by JEDEC
  • Production test of dynamic on resistance
    • Robust design, defined as
    • Natural life test
    • Wide gate safety margin
    • Transient overvoltage capacity
    • Very low QRR
    • Reduce cross loss
    • RoHS compliant; Standard and halogen-free instruction package

Product benefits

  • Improve Si  Efficiency/operating frequency of
  • Enable totem column bridgeless PFC design
  • Increase power density
  • Reduce system size and weight
  • Lower overall system cost
  • Easy to use Common grid drivers are easy to drive
  • GSD pin layout improves high-speed design

Product application

  • data communication
  • Wide range of industrial applications
  • PV inverter
  • Servo motor application


 

Key Specifications  
VDSS (V) 650 
VDSS(TR)  (V) 800 
RDS(on)eff  (mΩ) max* 85 
QRR (nC) typ 89 
QG (nC) typ 9.3 

Absolute Maximum Ratings (Tc=25°C unless otherwise stated.)

Symbol Parameter Limit Value Unit 
VDSS Drain to source voltage (TJ = -55°C to 150°C) 650 V  
VDSS(TR)  Transient drain to source voltage a 800 
VGSS Gate to source voltage   ±20 
PD Maximum power dissipation @TC=25°C 96 
ID   Continuous drain current @TC=25°C b25 
   
 Continuous drain current @TC=100°C b16 
IDM Pulsed drain current (pulse width: 10µs) 120 
(di/dt)RDMC Reverse diode di/dt, repetitive c 1200 A/µs 
(di/dt)RDMT Reverse diode di/dt, transient d 2600 A/µs 
TC Operating temperature Case -55 to +150 °C 
TJ Junction -55 to +150 °C 
TS Storage temperature -55 to +150 °C 
TSOLD Reflow soldering temperature e 260 °C 

Notes: 

  1. In off-state, spike duty cycle D<0.01, spike duration <1µs 
  2. For increased stability at high current operation, see Circuit Implementation on page 3 
  3. Continuous switching operation 
  4. ≤300 pulses per second for a total duration ≤20 minutes 
  5. Reflow MSL3 

Thermal Resistance 

Symbol Parameter Maximum Unit 
RΘJC Junction-to-case  1.3 °C/W 
RΘJA Junction-to-ambient f 62 °C/W 

Notes:  

f.        Device on one layer epoxy PCB for drain connection (vertical and without air stream cooling, with 6cm2 copper area and 70µm thickness) 

 

Recommended gate drive: (0V, 12V) with RG(tot) = 50-70Ω, where RG(tot) = RG + RDRIVER

Gate Ferrite Bead (FB1) Required DC Link RC Snubber (RCDCL) a 

Recommended Switching Node 

RC Snubber (RCSN) b, c 

240ohm at 100MHz [10nF + 10Ω] x 2 68pF + 15Ω 

Notes: 

  1. RCDCL should be placed as close as possible to the drain pin 
  2. A switching node RC snubber (C, R) is recommended for high switching currents (>70% of IRDMC1 or IRDMC2; see page 5 for IRDMC1 and IRDMC2) c.     IRDM values can be increased by increasing RG and CSN 


Electrical Parameter (TJ=25°C unless otherwise stated) 

Symbol Parameter Min Typ Max Unit Test Conditions 
Forward Device Characteristics    
VDSS(BL) Drain-source voltage 650 — — VGS=0V 
VGS(th) Gate threshold voltage 3.3 4.8 VDS=VGS, ID=0.7mA  
RDS(on)eff  Drain-source on-resistance a  — 72 85 mΩ VGS=10V, ID=16A,TJ=25°C 
    
  — 148 —  VGS=10V, ID=16A, TJ=150°C 
IDSS  Drain-to-source leakage current — 30 µA VDS=650V, VGS=0V, TJ=25°C 
    
  — 12 —  VDS=650V, VGS=0V, TJ=150°C 
IGSS  Gate-to-source forward leakage current — — 100 nA VGS=20V 
     
 Gate-to-source reverse leakage current — — -100  VGS=-20V 
CISS Input capacitance — 600 — pF VGS=0V, VDS=400V, f=1MHz       
COSS Output capacitance — 88 — 
CRSS Reverse transfer capacitance — 4.5 — 
CO(er) Output capacitance, energy related b — 131 — pF VGS=0V, VDS=0V to 400V 
     
CO(tr)  Output capacitance, time related c — 217 —   
QG Total gate charge — 9.3 — nC   V DS=400V, VGS=0V to 10V, ID=16A   
QGS Gate-source charge — 3.5 — 
QGD Gate-drain charge — 2.3 — 
QOSS Output charge — 85 — nC   VGS=0V, VDS=0V to 400V  
tD(on) Turn-on delay — 29 — ns  

VDS=400V, VGS=0V to 12V, 

ID=16A, RG=50Ω, 

ZFB= 240Ω at 100MHz 

tR Rise time — 7.5 — 
tD(off) Turn-off delay — 45 — 
tF Fall time — 8.2 — 

Notes: 

  1. Dynamic on-resistance; see Figures 17 and 18 for test circuit and conditions 
  2. Equivalent capacitance to give same stored energy as VDS rises from 0V to 400V 
  3. Equivalent capacitance to give same charging time as VDS rises from 0V to 400V 

 

Electrical Parameters (TJ=25°C unless otherwise stated) 

Symbol Parameter Min Typ Max Unit Test Conditions 
Reverse Devi ce Characteristics      
IS Reverse current — — 16 V GS=0V, TC=100°C, ≤25% duty cycle 
VSD  Reverse voltage a — 1.8 — VGS=0V, IS=16A  
    
  — 1.3 —  VGS=0V, IS=8A  
tRR Reverse recovery time — 33 — ns IS=16A, VDD=400V,  di/dt=1000A/s 
QRR Reverse recovery charge — 89 — nC 
(di/dt)RDMC Reverse diode di/dt, repetitive b — — 1200 A/µs  
IRDMC1 Reverse diode switching current, repetitive (dc) c, e — — 18 Circuit implementation and parameters on page 3 
IRDMC2 Reverse diode switching current, repetitive (ac) c, e — — 23 Circuit implementation and parameters on page 3 
(di/dt)RDMT Reverse diode di/dt, transient d — — 2600 A/µs  
IRDMT Reverse diode switching current, transient d,e — — 28 Circuit implementation and parameters on page 3 

Notes: 

  1. Includes dynamic RDS(on) effect 
  2. Continuous switching operation 
  3. Definitions: dc = dc-to-dc converter topologies; ac = inverter and PFC topologies, 50-60Hz line frequency 
  4. ≤300 pulses per second for a total duration ≤20 minutes 
  5. IRDM values can be increased by increasing RG and CSN on page 3 

 

 


PictureNameTypeDescriptionDetail
GSR065D013ALow Power GaN Chips GSR065D013 series 6...查看
GSR065E011Low Power GaN Chips GSR065E011 is an en...查看
GSR065D34Low Power GaN Chips GSR065D034 650V, 50...查看
NameVersionDescriptionDownload
GSR065D25-datasheet-CNV1.0中文参数说明文档.Download
Ganhonor Semiconductor Co., Ltd

Ganhonor Semiconductor Co., Ltd. was established in 2021. The project initiator is a leader in the field of gallium nitride (GaN、GaN HEMT、GaN FET). With the industry-leading gallium nitride power devices and their new applications as the flagship products, it takes the full advantages of the world's leading manufacturing technologies on the 6-8 inch GaN-on-Silicon power electronics platform, and the synergy of supply chain resources, core technology, manufacturing capability, key customers, capital market, local organization support and other key resources. This provides a new IDM platform to help achieve leapfrog development in the industry of the third generation semiconductors.

Contact

Copyright © 2023 江苏镓宏半导体有限公司.版权所有 |

苏公网安备 32039102000462号

| 苏ICP备2022007342号