

650V 35m Ω GaN FET

产品介绍

GSR065D046 650V、35 mΩ 氮化镓 (GaN) FET 开关型器件。它通过结合最先进的高压 GaNHEMT 与低压硅 MOSFET 来提供卓越的可靠性。通过降低栅极电荷、输出电容、交叉损耗和反向恢复电荷来提高器件效率。

订购信息

Part Number	Package	Package Configuration
GSR065D046	3 lead TO-247	Source

GSR065D046

TO-247 (top view) S

Cascode 设备结构

Cascode 示意图符号

产品特征

- 通过 JEDEC 认证的氮化镓技术
- 动态导通电阻生产测试
- •稳健的设计,定义为
 - 宽栅安全裕度
 - 瞬态过压能力
- 具有增强的浪涌电流能力
- 极低的 **Q**RR
- 交叉损耗减小

产品优点

- 启用图腾柱无桥 PFC 设计
 - 提高功率密度
 - 减小系统尺寸和重量
 - 整体系统成本更低
- 提高硬开关和软开关电路的效率
- 使用常用的栅极驱动器易于驱动
- •GSD 引脚布局改进

应用

- •数据通信
- •广泛的工业应用
- 光伏逆变器
- 伺服电机应用

主要规格		
V _{DSS} (V)	650	
V(TR)DSS (V)	800	
RDS(on)eff (m Ω) max*	41	
Qrr (nC) typ	150	
Q _G (nC) typ	22	

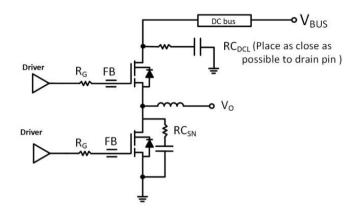
^{*} 动态导通电阻;;参见图 19 和 20

GSR065D046

绝对最大额定值 (Tc=25°C 除非另有说明)

Symbol	Parame	eter	Limit Value	Unit		
VDSS	Drain to source voltage (T _J = -	55°C to 150°C)	650			
V(TR)DSS	Transient drain to source volta	Transient drain to source voltage a		Transient drain to source voltage a		V
Vgss	Gate to source voltage		±20			
Po	Maximum power dissipation @	Tc=25°C	156	W		
	Continuous drain current @TC=25°C b		46.5	А		
lo lo	Continuous drain current @TC=100°C b		29.5	Α		
Ідм	Pulsed drain current (pulse wi	Pulsed drain current (pulse width: 10µs)		Α		
Tc	Operating temperature	Operating temperature Case		°C		
Tı	operating temperature	Junction	-55 to +150	°C		
Ts	Storage temperature	Storage temperature		°C		
Tsold	Soldering peak temperature e		260	°C		

Notes:


a.在关断状态下,尖峰占空比 D<0.01,尖峰持续时间<30μs,无重复b.为了提高高电流操作下的稳定性,请参见第 3 页上的电路实现c.10 秒,距离外壳 1.6mm

热阻

Symbol	Parameter	Typical	Unit
Rejc	Junction-to-case	0.8	°C/W
Roja	Junction-to-ambient	40	°C/W

电路实现

栅回路:

- 栅极驱动器: SiLab Si823x/Si827x
- 保持栅极环路紧凑
- 最小化与电源回路的耦合 电源回路:
- 最小化电源回路路径电感
- 将开关节点与高低功率平面的耦合降至最低
- 添加 DC 总线缓冲器以降低电压振铃
- 添加开关节点缓冲器以实现大电流操作

简化的半桥原理图

推荐的栅极驱动: (0V, 12V), RG=30Ω

Gate Ferrite Bead (FB1)	Required DC Link RC Snubber (RC _{DCL}) ^a	Recommended Switching Node RC Snubber (RC _{SN}) ^b
$200-270\Omega$ at 100MHz	[4.7nF + 5Ω] x 2	Not necessary ^b

Notes:

a.RC_{DCL} 应尽可能靠近漏极引脚。 b.只有当 R_G 小于推荐值时才需要 RC_{SN}。

GSR065D046

绝对最大额定值 (Tc=25°C 除非另有说明)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Forward De	evice Characteristics	_				
$V_{(BL)DSS}$	Drain-source voltage	650	_	_	V	V _{GS} =0V
$V_{GS(th)}$	Gate threshold voltage	3.3	4	4.8	V	
$\Delta V_{GS(th)}/T_J$	Gate threshold voltage temperature co- Efficient	_	-6.5	_	mV/°C	V _{DS} =V _{GS} , I _D =1mA
		_	35	41		Vgs=10V, Id=30A
RDS(on)eff	Drain-source on-resistance a		72	_	mΩ	Vgs=10V, Ip=30A, TJ=150°C
		_	3	30		V _{DS} =650V, V _{GS} =0V
IDSS	Drain-to-source leakage current	_	20	_	μA	V _{DS} =650V, V _{GS} =0V, T _J =150°C
	Gate-to-source forward leakage current	_	_	400		V _{GS} =20V
Igss	Gate-to-source reverse leakage current	_	_	-400	nA	V _{GS} =-20V
Ciss	Input capacitance	_	1500	_		
Coss	Output capacitance	_	147	_		
Crss	Reverse transfer capacitance	_	5	_	pF	V _{GS} =0V, V _{DS} =400V, f=1MHz
C _{O(er)}	Output capacitance, energy related b	_	220	_		
Co(tr)	Output capacitance, time related c	_	380	_	pF	V _{GS} =0V, V _{DS} =0V to 400V
QG	Total gate charge	_	22	_		
Qgs	Gate-source charge	_	8.4	_		V _{DS} =400V, V _{GS} =0V to 10V,
Q _{GD}	Gate-drain charge	_	6.6	_	nC	ID=32A
Qoss	Output charge	_	150	_	nC	V _{GS} =0V, V _{DS} =0V to 400V
t _{D(on)}	Turn-on delay	_	60	_		
tr	Rise time	_	10	_		
t _{D(off)}	Turn-off delay	_	94	_		V _{DS} =400V, V _{GS} =0V to 12V,
tr	Fall time	_	10	_	ns	R _G =30 Ω , I _D =32A, Z _{FB} =180 Ω at 100MHz (See Figure 14)

Notes:

a.动态导通电阻有关测试电路和条件,请参见图 19 和图 20 b.当 VDS 从 0V 上升到 400V 时,提供相同存储能量的等效电容 c.当 VDS 从 0V 上升到 400V 时,提供相同充电时间的等效电容

徐州金沙江半导体

Xuzhou GSR Semiconductor

GSR065D046

电气参数 (TJ=25°C 除非另有说明)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Reverse Device	Characteristics						
Is	Reverse current	_	_	29.5	А	V _{GS} =0V, T _C =100°C ≤25% duty cycle	
Vsb	Reverse voltage a	_	1.8	_	V	Vgs=0V, Is=32A	
		_	1.3	_		Vgs=0V, Is=16A	
trr	Reverse recovery time	_	59	_	ns	ns I _S =32A, V _{DD} =400V,	
QRR	Reverse recovery charge	_	150	_	nC	di/dt=1000A/μs	
(di/dt)RM	Reverse diode di/dt ^b	_	_	3200	A/µs	Circuit implementation and parameters on page 3	

Notes:

a.包括动态 $R_{DS(on)}$ 效果 b.反向传导 di/dt 不会超过推荐 R_G 的最大值

典型特性 (Tc=25℃ 除非另有说明)

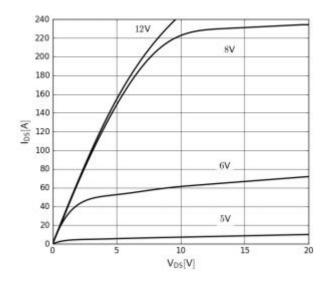


图 1. 典型输出特征 T_J=25°C Parameter: V_{GS}

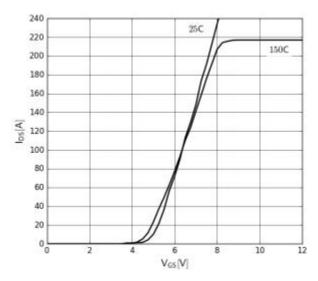


图 3. 典型的转移特性 Vps=20V, parameter: To

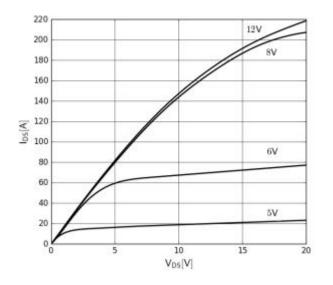


图 2. 典型输出特征 T_J=150°C Parameter: V_{GS}

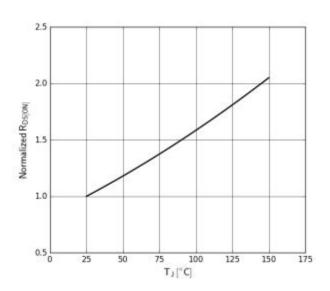


图 4. 归一化导通电阻 Ip=30A, Vgs=8V

典型特性(TC=25℃ 除非另有说明)

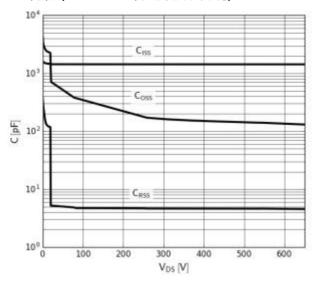
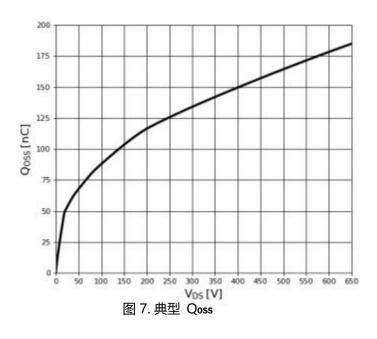



图 5. 典型电容 Vgs=0V, f=1MHz

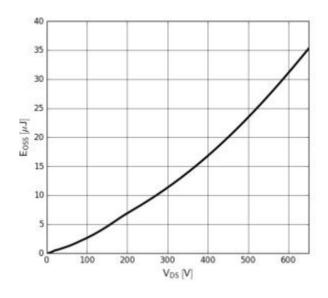
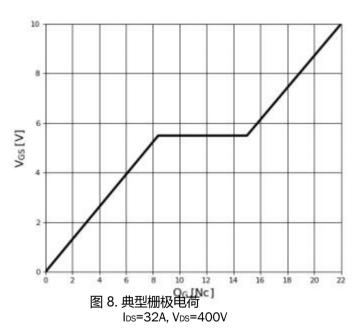



图 6. 典型的 Coss 储能

典型特性 (TC=25°C 除非另有说明)

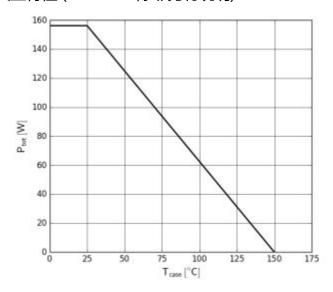


图 9. 功耗

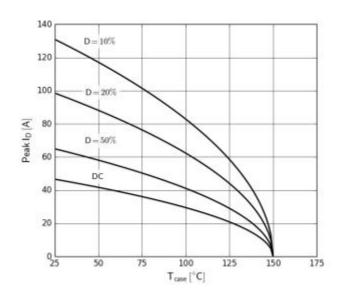


图 10. 电流降额 Pulse width ≤ 10µs, V_{GS} ≥ 10V

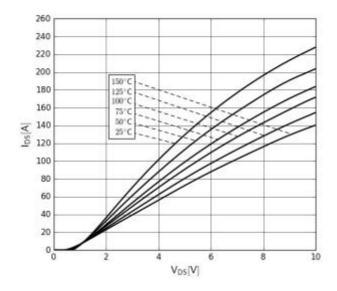


图 11. 二极管的正向特性 Is=f(Vsp), parameter: TJ

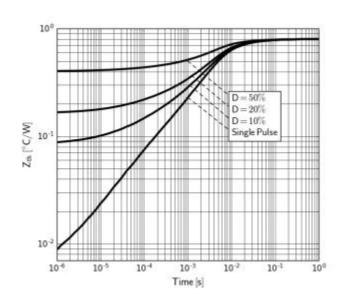


图 12. 瞬态热阻

典型特性 (TC=25℃ 除非另有说明)

图 13. 安全工作区 TC=25℃ Rg=30Ω, VDS=400V

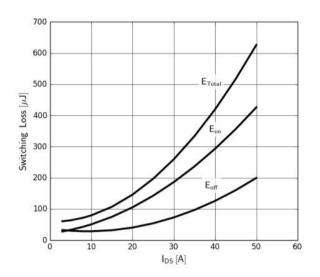


图 14.电感开关损耗 TC=25℃

测试电路与波形

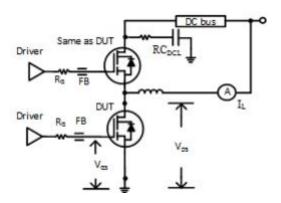


图 15. 开关时间测试电路

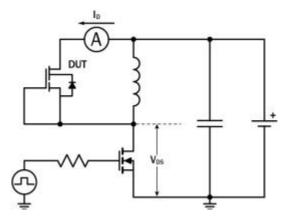


图 17. 二极管特性测试电路

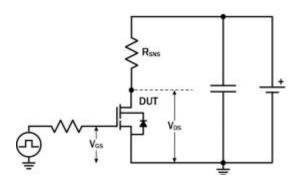


图 19. 动态 RDS(on)eff 测试电路

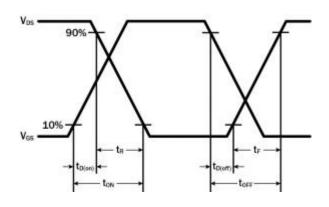


图 16. 开关时间波形

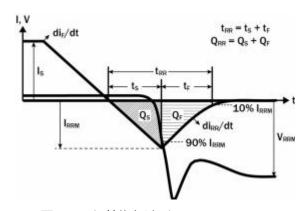


图 18. 二极管恢复波形

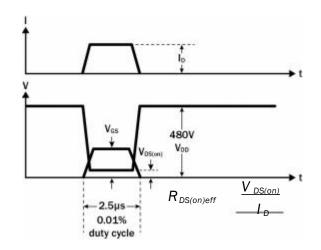


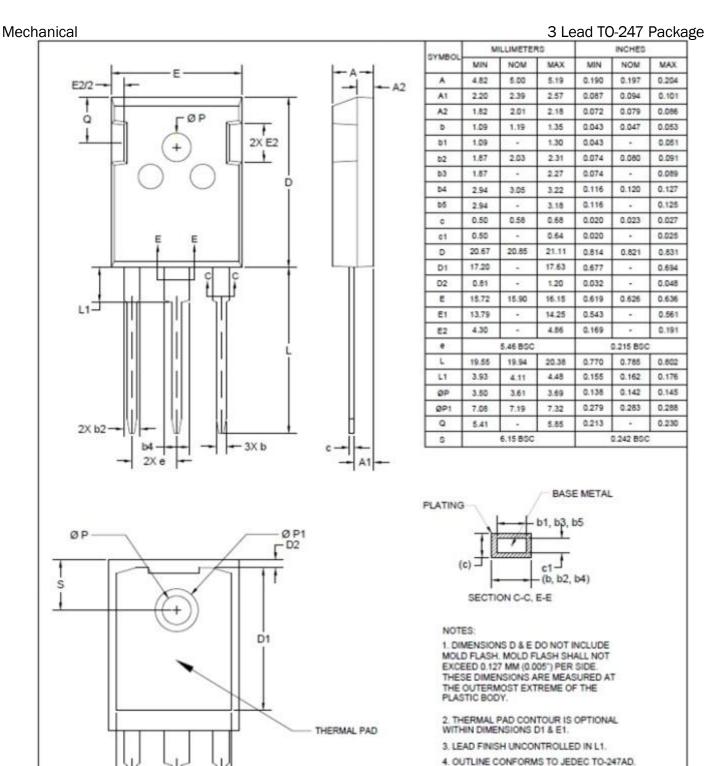
图 20. 动态 RDS(on)eff 波形

GSR065D046

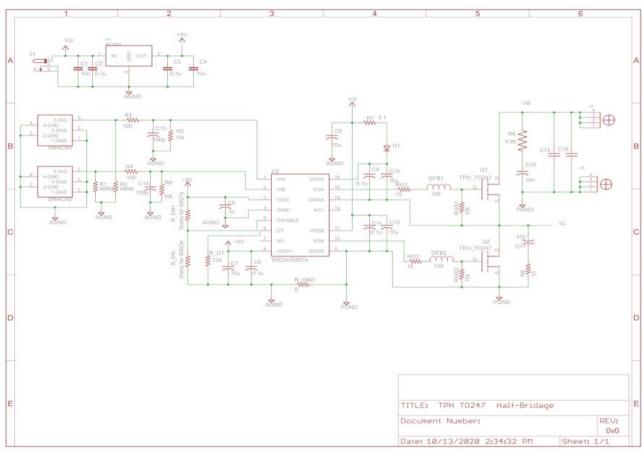
设计注意事项

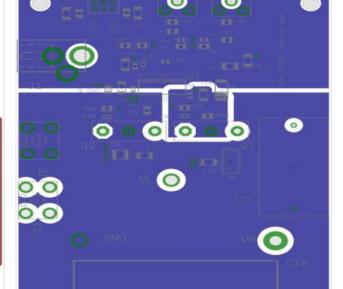
GaN 器件的快速开关降低了电流-电压交越损耗,可实现高频高效率操作。充分利用 GaN 快速开关特性需要遵守特定的 PCB 布局指南。下表提供了在评估过程中应遵循的一些实际规则。

评估GaN器件时:


DO	DO NOT
通过在驱动和电源环路中保持走线短,最大限度地降低电路电感	扭动 TO-220 或 TO-247 的引脚以适应 GDS 电路板布局
安装到 PCB 时,将 TO-220 和 TO-247 封装的引线长度降至最低	在驱动电路中使用长走线,器件的引线长度过长
使用最短检测环路进行探测,将探头及其接地连接直接连接到测试点	使用差模探头或带长线的探头接地夹

E1


GSR065D046



TO-247 3L

半桥参考原理图和 PCB 布局

半桥布局示例 (顶层)

半桥布局示例(底层)